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Bitcoin is a popular decentralized cryptocurrency, and the Bitcoin network is essentially an unstruc-
tured peer-to-peer (P2P) network that can synchronize distributed database of replicated ledgers
through message broadcasting. In the Bitcoin network, the average clustering coefficient of nodes
is very high, resulting in low message propagation efficiency. In addition, average node degree in
the Bitcoin network is also considerably large, causing high message redundancy when nodes use
the gossip protocol to broadcast messages. These may affect message propagation speed, hindering
Bitcoin from being applied to scenarios of high transactional throughputs. To illustrate, we have
collected single-hop propagation data of transactions of 366 blocks from Bitcoin Core. The analysis
results show that transaction verification and network delay are two major causes of low transaction
propagation efficiency. In this paper, we propose a novel P2P network structure, called local clique
network (LCN), for message broadcasting in the Bitcoin network. Specifically, to reduce transaction
validation latency and message redundancy, in LCN local nodes (logically) form cliques, and only
a few nodes in a clique broadcast messages to the other cliques, instead of each node sending
messages to its neighboring nodes. We have conducted extensive experiments, and the results show
that message redundancy is low in LCN, and message propagation speed increases significantly.
Meanwhile, LCN exhibits excellent robustness when average node degree remains high in the Bitcoin

network.
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1. INTRODUCTION

Bitcoin is one of the most popular digital cryptocurrencies
[1–3], exhibiting characteristics of decentralization and
anonymity. First introduced in Bitcoin, blockchain [4–7] com-
bines techniques from cryptography, consensus mechanism,
peer-to-peer (P2P) network and other related fields to realize
a distributed database to store transactions [8, 9]. Bitcoin
network is an unstructured network, and it uses gossip protocol
[10] to synchronize messages. Nodes broadcast transactions
and blocks via a P2P network. The gossip protocol is simple
and exhibits good robustness and scalability, but it suffers from
security risks such as flood attacks [11] and broadcast storms

[12, 13]. In contrast, Ethereum [14, 15] is a structured network
that employs the Kademlia algorithm [16] and distributed hash
table (DHT) technology to route and locate data in a P2P
network accurately. Gencer et al. pointed out that Ethereum
nodes are widely distributed compared to Bitcoin nodes, but
Ethereum nodes have less spare bandwidth [17]. In general,
neither Bitcoin nor Ethereum has apparent advantages over the
other.

Nodes have four major functionalities in the Bitcoin
network, i.e. wallet, mining, database and network routing.
Each node independently verifies transactions and blocks
without relying on any other nodes [18]. Researchers have
conducted extensive studies to analyze the Bitcoin network
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[19–21]. One observation is that the spread of transactions
is much slower than blocks because transactions mainly rely
on wallet nodes [20]. Meanwhile, each wallet node broadcasts
messages received to the other nodes, resulting in high message
redundancy. The slow transaction propagation speed prevents
Bitcoin from being suitable for high transaction throughput
scenarios.

Currently, there exists a lot of research work on the security
and privacy issues of Bitcoin [22–24], however, less attention
has been paid to improving the efficiency of transaction propa-
gation [25]. Decker et al. [19] suggest forwarding small trans-
actions directly to reduce the propagation delay, but this incurs
a risk that invalid transactions may spread across the Bitcoin
network. Erlay [26] is a low-bandwidth transaction propagation
protocol, which avoids linear increase in bandwidth consump-
tion as the number of connections increases, at the cost of larger
transaction latency. Conflux [27] uses Shrec [28] to improve the
propagation of effective transactions and increase blockchain
throughput, however Shrec requires extra CPU costs. BCBPT
[29] is a proximity-aware extension to the current Bitcoin
protocol that groups Bitcoin nodes based on ping latencies
between nodes. INDF [30] consists of two algorithms for a
node to find influential nodes to broadcast transactions. Both
BCBPT and INDF may have Matthew effects, aggravating the
centralization of Bitcoin network.

We analyze real transaction data in the Bitcoin network in
Section 3, and analysis results show that transaction verifica-
tion and network delay are two significant causes of low trans-
action propagation efficiency in the Bitcoin network. In this
paper, we propose a novel network structure called local clique
network (LCN) to improve transaction propagation efficiency.

Specifically, in LCN, local nodes (logically) form cliques. A
node adopts different transaction propagation strategies with
respect to nodes in the same clique (intra-clique) and nodes
in other cliques (inter-clique), in order to improve transac-
tion propagation efficiency and reduce message redundancy.
Compared to the current work, our solution does not rely
on additional prior knowledge, is easy to implement and can
improve transaction propagation efficiency in the Bitcoin net-
work. Moreover, our approach is compatible with the transac-
tion propagation protocol currently used in Bitcoin network.

In this paper, we made the following contributions:

• We collect real transaction data from Bitcoin Core, and
conduct extensive data analysis to show that transaction
propagation delay is mainly caused by transmission
delay and verification delay in the Bitcoin network.

• We propose a novel network structure called LCN,
which logically groups the nodes into different cliques.
We design two novel propagation strategies (i.e. strategy
(a) and (b)) for inter-clique and intra-clique nodes to
forward messages, aiming to reduce inter-clique and
intra-clique message redundancy in LCN. Also, the

existing Bitcoin network can easily incorporate our
propagation strategy (a).

• We have conducted extensive experiments, and the
results show that LCN can effectively increase trans-
action propagation efficiency and reduce message
redundancy. We have also found that the Bitcoin network
achieves high transaction propagation efficiency and
network robustness if propagation strategy (a) is
employed.

We organize this paper as follows. First, we give a literature
review in Section 2, then we analyze real transaction data to
identify the major causes that affect transaction propagation
efficiency in the Bitcoin network in Section 3. We present
LCN and two efficient strategies for transaction propagation
in Section 4, and conduct extensive experiments in section 5
to verify the effectiveness and robustness of LCN. Finally, we
conclude this paper in Section 6.

2. RELATED WORK

Some researchers [31] identify nodes in the Bitcoin network
by using external information such as IP addresses, geographic
locations, etc. Christian et al. [19] analyzed blocks and trans-
actions and concluded that Bitcoin network delay is the leading
cause of blocks fork. They improved block propagation and
suggested forwarding small transactions directly to reduce the
time delay caused by transaction round trips. A single node
itself suffers from the risk of flooding attacks in the Bitcoin
network, and directly forwarding small transactions extends
this kind of risk to the whole network. Therefore, it is necessary
to verify a transaction before forwarding it.

Bitcoin uses proof-of-work (PoW) as the consensus mecha-
nism to ensure the security of a distributed ledger. In order to
obtain higher returns, mining nodes form mining pools to share
computing power [32]. Specifically, miners and the mining
pool server use a unique protocol to communicate. The mining
pool server acts as a full Bitcoin node that employs the stratum
protocol to communicate with nodes in the Bitcoin network
[33, 34]. Lischke et al. [21] claimed that the Bitcoin network
is a scale-free network [35, 36] at certain levels (e.g. time,
businesses and country), and mining pools have a large number
of connections. Mining pools try to receive more transactions
in time (meaning more transaction fees), however they are
reluctant to forward transactions to prevent other mining pools
from receiving these transaction fees [37, 38]. Donet and
Antoni [20] confirmed this phenomenon, and they found that
transaction propagation speed is much slower than blocks, i.e.
in the Bitcoin network, it takes less than 22 s to broadcast 50%
blocks to 25% of the nodes. In contrast, it takes 17 min to
broadcast 50% of transactions to 25% of the nodes.

Existing approaches focus on improving the propagation
efficiency of transactions or blocks by finding influential nodes

Section B: Computer and Communications Networks and Systems
The Computer Journal, Vol. 66 No. 2, 2023

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/66/2/318/6455661 by Shandong U
niversity Library user on 14 N

ovem
ber 2024



320 K. L. Yan et al.

[30, 39] or reducing the delay between nodes through cluster-
ing [29, 40]. RepuLay [39] is a reputation-based relay proto-
col that effectively accelerates the propagation of transactions
and optimizes the usage of nodes bandwidths. BCBPT [29]
groups bitcoin nodes based on the ping delay between nodes
to improve broadcast efficiency. BlockP2P-EP [40] uses the
K-Means algorithm for gathering proximity peer nodes into
clusters and conducts a parallel spanning-tree broadcast algo-
rithm. MempoolSync [41] is a new synchronization protocol
that sends transactions to peers in an effort to alleviate the
impact of churn and keep mempools of nodes synchronized.
Zhang et al. [42] derive a novel influence time minimization
(ITM) problem and propose a greedy-based algorithm for fast
transaction broadcasting in Bitcoin network.

In the Bitcoin network, if we exclude mining pools, casinos
and exchanges, wallet nodes are primary producers of trans-
actions; wallet nodes are mainly responsible for transaction
forwarding. Therefore, we mainly focus on improving trans-
action propagation efficiency for wallet nodes, which form a
subnetwork (i.e. ignoring nodes such as mining pools, casinos
and exchanges) of the Bitcoin network [21].

There are two kinds of wallet nodes, namely full nodes and
lightweight nodes. A full node stores complete blockchain data.
In order to maintain a local copy of the blockchain and the
transaction pool, a full node will remain online. A Lightweight
node generally runs on devices with limited resources, e.g.
smartphones. A lightweight node only stores the block headers
of the blockchain and the transactions of this node. Light nodes
cannot independently verify the legitimacy of a transaction.
They can only complete a transaction by simple payment
verification (SPV), while full nodes can independently verify
all transactions and new blocks. Therefore, our investigation
focuses on the full nodes. In the sequel, when mentioning the
Bitcoin network, we refer to the subnetwork of wallet nodes
(i.e. full nodes).

The Bitcoin network is essentially a complex network with
the characteristics of self-organization and self-similarity. In a
complex network, the degree of a node refers to the number of
neighbors connected to that node, and the average node degree
refers to the average of node degrees across the entire network.
We usually use the following to measure a network:

(1) Characteristic path length is also called the average short-
est path. The path length between two nodes refers to
the minimum number of edges that one node passes to
reach another node. The average of the path lengths of
all nodes is defined as the characteristic path length of
the network.

(2) Clustering coefficient is a measure of the degree of clus-
tering of nodes in a network. Specifically, if a node has
k neighbors, there may be at most k(k−1)

2 edges between

neighbors. The actual number of edges died by k(k−1)
2

is the node’s local clustering coefficient. The average of

local clustering coefficients of all the nodes is called the
average clustering coefficient.

There is a small-world effect in the Bitcoin network
[20, 43], meaning that the Bitcoin network has a high average
clustering coefficient and a small average shortest path. When
the probability of reconnection between nodes is 1, a small-
world network reduces to a random network, and the average
shortest path reaches the smallest, i.e. message propagation
speed reaches the fastest. In this paper, we simulate the Bitcoin
network by using a random network. Therefore, the transaction
propagation efficiency of a random network is the upper bound
of the Bitcoin network.

3. TRANSACTION PROPAGATION IN BITCOIN
NETWORK

3.1. Transaction propagation process

Bitcoin is an electronic transaction system running on a P2P
network. Nodes jointly maintain a distributed database of repli-
cated ledgers that record all valid transactions. At some fixed
interval, e.g. about 10 min, nodes in the network synchronize
data through blocks. Each block relies on its parent block
to guarantee the security and integrity of the previous block.
Miners record transactions in blocks, and once there are enough
blocks added after a block, those transactions are almost impos-
sible to deny. It is a widely accepted consensus that after six
blocks, the transactions are safe. A transaction takes parent
transactions as inputs and uses all the inputs for outputs. In
general, miners’ compensation comes from the unspecified
outputs and the new block rewards.

During transaction propagation, nodes will verify received
transactions, e.g. checking whether inputs and outputs are
valid, before forwarding a transaction to other nodes. In some
cases, nodes may receive a transaction whose parent trans-
actions have not arrived yet, so this transaction is called an
orphan transaction and stored in the orphan transaction pool.
An orphan transaction will not be verified and forwarded until
all its parent transactions arrive, thus causing transaction prop-
agation delay. A same coin being used multiple times is another
potential reason the transaction cannot reach the entire network
in time [44], i.e. the double-spending attack. It is impossible
to agree on subsequent transactions that depend on conflicting
transactions, due to the inconsistent sequence of transactions
received by nodes in the Bitcoin network.

There are mainly three kinds of messages during transaction
propagation, i.e. inv, getdata and tx. Here, a node can send
inv message to declare inventory (transactions or blocks) they
possessed, send getdata to request missing transactions and
send tx to transmit a set of transactions in response to getdata
message received from the other nodes. We assume that each
message contains only one transaction. In Fig. 1, we depict
the propagation process of a transaction between two nodes
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Improving Bitcoin Transaction Propagation Efficiency 321

FIGURE 1. A transaction propagates between node A and B. The bold
red line is the delay time caused by B during transaction propagation.
Node A sends inv to B to declare transactions, then B sends getdata to
A to request the transaction. After B receives transaction tx from A, B
verifies tx and sends inv to its neighbors.

A and B. Tinv is the time node B receives inv from A, Tgetdata
is the time node B sends getdata signal to A, Ttx is the time
node B receives transaction tx and Tcheck is the time when
transaction verification is completed and inv signal is sent.
Here, Tr = Ttx −Tgetdata is the round-trip time (RTT) including
sending getdata and tx, and Tv = Tcheck − Ttx is the time
cost for transaction verification. Transaction propagation pro-
cess between two nodes A and B (we call it a single-hop) is
inv(A) → getdata(B) → tx(A) → verify(B).

3.2. Data collection and analysis

To evaluate transaction propagation efficiency in the existing
Bitcoin network, we used Wireshark [45] software to monitor
nodes in Bitcoin Core by collecting 366 blocks with block
heights from 632 157 to 632 224, 638 079 to 638 249 and
638 271 to 638 400, respectively. Note that these blocks are
not continuous because we collected the data in three different
time, where each collection took about 24 h. Our analysis
focuses on the transaction propagation process of these blocks,
and we correctly identified a total of 27 265 transactions in
these 366 blocks. The data underlying this paper will be shared
on reasonable request to the corresponding author. The data
collecting and processing procedure are as follows.

(1) We use Wireshark to collect transactions in Bitcoin Core
and parse the collected data into JSON format.

FIGURE 2. Distribution of Tr and Tv over 366 blocks collected from
Bitcoin Core.

(2) We analyze the JSON data, sort the data according to
the type of requests and then sort them on timestamps
in ascending order, and get a list of messages of getdata,
inv and tx, respectively.

(3) We traverse all getdata sent by the nodes in Bitcoin Core.
Specifically, for all getdata messages we perform the
following procedures:

(3.1) Search the list of inv messages, find the first
received inv, get Tinv of the transaction, then
find the first inv sent by this node and get Tcheck
accordingly.

(3.2) Search the list of tx messages, find the first
received tx, and get Ttx.

(3.3) Get Tr and Tv, where Tr = Ttx − Tgetdata and Tv =
Tcheck − Ttx.

When collecting the 366 blocks, we find that the number of
a local node’s neighbors lies in the range [20, 60], stabilizing
in the range [40, 50], which means that the node degree in the
Bitcoin network is very large [19].

In Fig. 2, we depict the length distribution of Tr and Tv,
where the average of Tr and Tv is 299.94 ms and 661.19 ms,
respectively. Here, Tr is around 300 ms (Note that most of
the ping time is also around 300 ms in our collected data),
and the standard deviation of Tr and Tv is 0.1853 ms and
4.82 ms, respectively. It means that message transmission time
is relatively stable, whereas transaction verification time is not.
We also collected a similar amount of Bitcoin Core data on
multiple devices at different times, and the distribution of Tr
and Tv remains the same as in Fig. 2.

In addition, according to our analysis, the average size of
message inv, getdata and tx is 406.32, 260.24 and 443.63
bytes, respectively. Given that network bandwidth is much
larger than the size of the above messages, we do not single
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out the transmission time of a message. Instead, we use RTT
to denote the time used to transmit message getdata and inv. In
other words, the ping time between two nodes overwhelmingly
dominates the message transmission time. The time interval
between inv and getdata, and between getdata and tx are
both negligible. For example, according to our analysis of the
collected data, Tgetdata−Tinv is less than 1 ms. Hence, we ignore
them for ease of discussion. Suppose that the time to transmit
a message between two nodes is Tp, we have Tp = Tr

2 . The
transmission time of message inv, getdata and tx between two
nodes can also be regarded as Tp. Hence, from Fig. 1, we can
see that single-hop transaction propagation time is 3×Tp +Tv,
where Tv is mainly affected by transactions in inputs, i.e.
whether the parent transactions can arrive in time.

Another observation is that Tv will increase significantly
when a node provides the synchronization service to other
nodes. The reason is that there are excessive messages waiting
to be processed in the local queue rather than the network
bandwidth. Therefore, to increase transaction propagation effi-
ciency, we may resort to some possible options given below:

(1) Minimize network delay between nodes by improving
network transmission speed.

(2) Minimize transaction verification time by reducing the
number of parent transactions required, and broadcasting
the transaction immediately.

(3) Minimize the number of redundant messages to save
processing time.

Option (1) is orthogonal to our work in this paper, because
various factors contribute to network delay, e.g. network band-
width and topology. Hence, we focus on options (2) and (3), i.e.
minimizing transaction verification time and message redun-
dancy. To this end, we propose a novel P2P network structure
called LCN, and design two efficient transaction propagation
strategies in the next section.

4. LOCAL CLIQUE NETWORK

4.1. The structure of LCN

As mentioned in Section 2, the Bitcoin network has a very
large average clustering coefficient [43]. A sizeable average
clustering coefficient means that there is a higher possibility
that some nodes form a clique, i.e. a complete graph. Given a
collection of Bitcoin nodes, we construct an LCN by (logically)
partitioning these nodes into multiple cliques. Transactions or
messages propagate in LCN.

In LCN, each node belongs to exactly one clique, and a
node connects to nodes in the inter-cliques. If there is an edge
between any two nodes, then these two nodes are neighbors. In
addition, if any two neighboring nodes are in the intra-clique,
they call each other an insider with respect to their clique.
Otherwise, they regard each other as an outsider. Note that a

FIGURE 3. An example LCN, where the number of nodes is N = 30,
the average degree of nodes is k = 7 and the average size of cliques
is c = 4. Here, node size represents magnitude of node degree, and
node color distinguishes different clique they belong to, i.e. the edges
between nodes in the intra-clique are of the same color. The black
edges connect nodes from different cliques.

node randomly connects to nodes in inter-cliques (following
the same strategy for nodes connecting in a random network),
i.e. outsider relationship is random. To illustrate, we give an
example of LCN in Fig. 3.

In Bitcoin Core, there are some long-running nodes called
seed nodes. A new node get neighboring nodes by sending
getaddr to seed nodes. In LCN, a new node joins the network
using the above procedure. Specifically, Algorithm 1 shows the
process. The new node first requests some nodes S from seed
nodes and then requests neighbors of these nodes, which return
their insider nodes list inList and outsider nodes list outList.
Upon receipt of S, inList and outList, the new node randomly
selects a clique to join. For the nodes in the intra-clique, the new
node needs to connect to each of them. Then, the new node
randomly selects some nodes in inter-cliques as outsiders to
connect with.
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A node is mandatory to join only one clique to avoid some
problems. For example, suppose node A and node B belong to
both cliques C1 and C2. When A and B receive a message from
C1, they need to decide which node forwards this message to
C2. This problem worsens when the number of cliques is large,
and many nodes join in more than one clique.

If a node receives a message sent by its insider, it only
forwards the message to its outsiders. Meanwhile, if a message
comes from an outsider, the node forwards the message to all its
neighbors. To improve propagation efficiency, we design two
message propagation strategies for LCN, and details are given
in Section 4.3.

4.2. Message propagation redundancy

When a node receives a transaction from a neighbor, the node
does not know whether the other neighbors own this trans-
action, so it sends inv to all neighbors, causing an excessive
number of inv messages.

To quantify propagation redundancy in the network, we
define message propagation redundancy (MPR) as the average
number of the same message received per node. Let msg(vi) be
the times a node vi receives the message, MPR is defined as
follows:

MPR = 1

N

N∑
i=1

msg(vi), (1)

where N is the total number of nodes in the network. When
MPR = 1, there is no message redundancy during propagation,
whereas when MPR > 1, there is some degree of message
redundancy. Our goal is to reduce message redundancy as much
as possible during propagation to improve transaction speed in
Bitcoin.

Given a Bitcoin network BTC = 〈N, M〉, where N is the
number of nodes and M is the number of edges. Every two
nodes in BTC are connected with a probability p, 0 < p < 1,
and the average degree of nodes is k = 2M

N . Assuming k > lnN,
then BTC is a connected graph [46]. A message will pass
through all the edges in the Bitcoin network, i.e. the message
propagates M times. Hence, MPR of Bitcoin network BTC is

MPRBTC = M

N
= k

2
(2)

Let LCN = 〈N, M〉 be an LCN, k the average node degree, c
the average number of nodes in each clique and c′ the average
number of outsiders of each node. The total number of cliques
is approximately g = N

c . Hence, each node belongs to a
clique with probability p = 1

g . The distribution P(c) of the
average size of cliques is a binomial distribution, which can

be approximated by a Poisson distribution as follows:

P(c) =
(

N

c

)
pc(1 − p)N−c ≈ λc

c!
e−λ, (3)

where λ = Np = N
g , and c is the clique size.

Assume that the size of a clique is c and the total number of
edges in the clique is mc, then we have

mc =
c∑

i=1

(c − i) = c(c − 1)

2
(4)

From the above Eq.(3) and Eq.(4), we can get the total
number of edges Mc over all cliques as follows:

Mc =
N∑

c=1

mcP(c)g = 1

2
gλ2 = N × c

2
(5)

Therefore, the average degree of insiders is 2Mc
N = c, and the

average degree of outsiders is k − c. Assuming the number of
edges not in the cliques is Mc′ , then we have

Mc′ = M − Mc = N(k − c)

2
(6)

When a message propagates in LCN, there is no message
redundancy for insiders, i.e. a total of g × (c − 1) times
of propagations in LCN. Note that the message propagation
procedure between outsiders is the same as the propagation
procedure in the Bitcoin network, where the total number of
message propagation is Mc′ . Hence, we can calculate the MPR
of our LCN by the following equation:

MPRLCN = g × (c − 1) + Mc′

N
= k − c

2
− 1

c
+ 1 (7)

Compared to MPR of Bitcoin network, i.e. MPRBTC = k
2 as

given in Eq.(2), the MPR of our LCN is reduced by c
2 + 1

c − 1.

4.3. Transaction propagation strategies

When a node receives a transaction in the Bitcoin network, it
cannot forward the transaction to other nodes directly, because
this may cause a broadcast storm. Although the Bitcoin network
itself suffers from the broadcast storm problem, prohibiting
messages from direct-forwarding could reduce this risk. Gen-
erally, a node periodically declares its newly received trans-
actions through the inv message. If a neighbor notices that
some transactions are missing, it broadcasts a getdata message
containing the hash values of the transactions. Then, the nodes
that possess those transactions send back the transactions via
the tx message.
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In LCN, nodes adopt different forwarding strategies for
insiders and outsiders to improve transaction propagation effi-
ciency, reduce message redundancy and avoid broadcast storm.
Specifically, for insider and outsider nodes, we design the
following two message propagation strategies:

(a) When a node receives a transaction tx, it sends inv
immediately to its outsiders, and then it starts to verify tx.
Upon successful verification of tx and receiving getdata
from an outsider, the node sends tx to the outsider.

(b) When a node receives inv, it immediately forwards inv
to its insiders. Once the node receives tx from the sender
and getdata from an insider, it sends tx to the insider.

In Section 3, we have introduced single-hop propagation
delay, defined the time spent in propagating a single message
and the round-trip propagation time as Tp and Tr, respectively.
Suppose the completion time of verifying a transaction for a
sender and a receiver are Tcheck′ and Tcheck, respectively, and the
single-hop propagation delay between them is Tcheck − Tcheck′ .
Figure 4 illustrates the transaction propagation process in LCN,
where node A and node B use propagation strategy (a) to
synchronize transactions. Suppose A and B spend Tv′ and Tv

to verify tx, respectively, then the single-hop propagation delay
between node A and B is max{Tv′ , Tr} − Tv′ + Tp + Tv. Nodes
B and C belong to the same clique, so we use propagation
strategy (b) to synchronize transactions between the two nodes.
Suppose B and C spend Tv′ and Tv, respectively, to verify tx,
and node B receives inv and tx at Tinv′ and Ttx′ , respectively.
Then the single-hop propagation delay between B and C is
max{Ttx′ , Tinv′ + Tr} − Ttx′ − Tv′ + Tp + Tv.

FIGURE 4. An illustration of transaction propagation strategies,
where node A and B belong to different cliques but are neighbors,
and node B and C are in the intra-clique. When A receives tx, it
immediately sends inv to B before verifying tx. After A verified tx
and received getdata from B, A sends tx to B. Meanwhile, B directly
forwards the received inv to C. After B received tx from A and getdata
from C, B sends the tx to C, and sends inv to its outsider.

According to the definition of LCN, a clique is essentially a
complete graph, meaning if a node receives a message (either
inv or tx) sent from some node in a same clique, then the rest
nodes in the same clique will also receive this message. There-
fore, if a message comes from an insider, the node who receives
the message only needs to perform propagation strategy (a).
On the other hand, if a message comes from an outsider, the
node who receives the message will perform both propagation
strategies (a) and (b). In essence, the Bitcoin network is a
special case of LCN when c = 0, i.e. each node forms a clique,
and there is no insider node. Therefore, LCN and the existing
Bitcoin network are compatible. The neighboring nodes in the
Bitcoin network are outsiders, so nodes can directly use our
propagation strategy (a). Note that block propagation can also
apply to our message propagation strategies.

4.4. Security of LCN

We discuss security issues of LCN in this section. As a public
blockchain, one can join the Bitcoin network (or LCN) freely,
so we assume that the adversary may be either a hacker or
an autonomous system (AS) that control multiple ‘normal’
nodes. Nodes in the Bitcoin Core can punish the nodes with
abnormal traffic and will not forward illegal transactions (or
orphan transactions) in the network, thereby reducing the risk
of broadcast storm. On the other hand, at the network level there
exists partitioning attacks [47, 48] for the Bitcoin network. We
discuss the above two security issues that LCN may encounter
below.

Broadcast Storm. For a P2P network, a broadcast storm is a
surge of broadcast traffic. Broadcast storm consumes so many
network resources that the network becomes unable to transmit
normal traffic, causing the network to be unresponsive. In LCN,
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FIGURE 5. Node A propagates a transaction to LCN (insiders are
connected with solid lines and outsiders with dashed lines), then red
nodes B, C and E verify tx. Note that we omit the process of getdata
and some nodes for brevity.

propagation strategy (b) does not verify transactions, and may
suffer from broadcast storm attack. However, as we will show
below that LCN can resist this potential threat, even though
the adversary tries to exploit this ‘vulnerability’ to implement
a broadcast storm attack.

Figure 5 exemplifies the process of node A sending a trans-
action in LCN. Node A first sends inv to all its neighbors, i.e.
node B and C, and node C directly forward inv to its insider
E. Upon receipt of tx from A, B employs propagation strategy
(a) (because A and B are insiders) to send inv to node D, who
then sends inv to its insiders, i.e. node G. Since A and C are
outsiders, C forwards tx to its insider E. Meanwhile, C also
sends inv to its outsider F. Since B, C and E will verify tx, they
will stop sending tx to their outsiders, i.e. node D, F and I, if
tx is an invalid transaction. Since propagation strategy (a) used
by outsiders will verify each transaction before sending, invalid
transactions will not be forwarded unlimitedly, thus avoiding
broadcast storm attack.

Partitioning Attack. Partitioning attack is a critical security
threat that exploits network connectivity. In terms of spatial
partitioning, the adversary aims to isolate a group of nodes to
prevent those nodes from generating transactions or receiving
blocks. On the other hand, for temporal partitioning, the adver-
sary subverts a group of nodes by feeding them counterfeit
blocks and creating forks in the network. In short, in spatio-
temporal partitioning, the adversary ensures that the fork is
maintained for a long time, thus facilitating a double-spending
attack. Basically, a network with low-connectivity is prone to
partitioning attack, hence network connectivity is critical to
defending against such attack.

In general, P2P network is highly dynamic, i.e. nodes joining
and leaving LCN all the time. When a node leaves LCN, it
will delete all its intra-clique and inter-clique edges, meaning
that the clique the node lies in will remain to be a complete
graph and all the inter-cliques also stay completely connected.
Meanwhile, Algorithm 1 guarantees that each clique in LCN
remains to be a complete graph when a new node joins LCN.
Essentially, LCN can be represented by a graph G = 〈N, M〉,
where N and M are nodes and edges, respectively. Assuming k

is the average node degree, c the average size of cliques and N
c

the number of cliques, from Eq.(6) we can see that the average
node degree of outsiders is k − c. Based on random graph
theory [46], network connectivity of LCN can be summarized
below:

• In the best case, all cliques are complete graphs, i.e. the
insiders of each clique are connected. Therefore, we can
treat each clique as a node, and there are N

c nodes in total
with average node degree c×(k−c). As long as c×(k−
c) > ln N

c holds, LCN remains connected.
• When a clique in LCN is not a complete graph, i.e.

propagation strategy (b) fails for some insiders in the
clique, then these insiders can only rely on propagation
strategy (a). Consider the worst case where the insiders
are not fully connected in each clique, the network
remains connected if (k − c) > lnN.

From the above discussion we can see that LCN is secure
against broadcast storm and partitioning attack, and a message
will eventually propagate to the whole network, as long as LCN
remains connected.

5. EXPERIMENTAL EVALUATION

5.1. Experimental setting

In this section, we empirically evaluate the performance of
LCN and the proposed propagation strategies. Specifically,
we build a Bitcoin network and an LCN using igraph-python
(python 3.8.2). The number of nodes N is set to 10 000 for
both networks. For brevity, we use BTC and BTC (a) to denote
the original Bitcoin network and the Bitcoin network with
our propagation strategy (a), respectively, and LCN stands for
local clique network using propagation strategies (a) and (b).
All experiments are conducted on a PC with Intel Xeon E5-
2690v3 CPU with 128GB memory, running on Windows 10.
Each reported measurement in the results is an average over
100 trails.

5.2. Transaction propagation efficiency under ideal
settings

Bitcoin network is a complex system in real applications,
where transaction transmission and verification time vary sig-
nificantly. Without loss of generality, we simplify experimen-
tal settings and assume some ideal cases. Specifically, we
assume that network delay Tp between any two nodes is the
same, transaction verification time of a node is Tv, Tv > Tr
and Tv � Tp. Therefore, the single-hop propagation delay
max{Ttx′ , Tinv′ + Tr} − Ttx′ − Tv′ + Tp + Tv between insiders
can be simplified to Tp, and the single-hop propagation delay
max{Tv′ , Tr}− Tv′ + Tp + Tv between outsiders can be reduced
to Tp + Tv. Here, we regard the number of hops as transaction
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TABLE 1. Transaction propagation time versus average clique size c, where k is fixed to 18.

c APL CC MPR Tp Tv

0 3.5158 0.0018 9.0000 3.5175 3.5175
2 3.5236 0.0142 7.0730 4.8304 2.8907
4 3.5460 0.0509 7.3335 4.3649 2.6613
6 3.5828 0.1126 6.6673 4.1438 2.5160
7 3.6069 0.1527 6.2429 4.1235 2.4961
8 3.6351 0.1985 5.7981 4.0773 2.4684
9 3.6690 0.2506 5.3353 4.0690 2.4532
10 3.7108 0.3092 4.8612 4.0997 2.4688
11 3.7648 0.3743 4.3788 4.1098 2.4860
12 3.8383 0.4454 3.8928 4.1869 2.5325
13 3.9432 0.5225 3.4051 4.2545 2.5913
14 4.0951 0.6055 2.9162 4.3794 2.6540
16 4.6383 0.7899 1.9348 4.8664 2.8958

propagation time. In Section 3, we calculate the single-hop
transaction propagation time as 3 × Tp + Tv in BTC, hence
each single-hop transaction propagation of BTC(a) is 2 × Tp

faster than BTC.
Table 1 presents the transaction propagation time regarding

different clique size c when the average node degree k is
fixed to 18. From Table 1 we can see that when c = 0, the
average number of hops in BTC(a) is 3.5175 × (Tp + Tv). As
c increases, the average clustering coefficient (CC) grows sig-
nificantly, whereas the average shortest path (APL) increases
slowly. The rationale is that when the size of clique becomes
larger, nodes tend to form bigger clusters, causing both the
local clustering coefficient and average clustering coefficient
to increase. In addition, the transaction transmission hop Tp
(i.e. network delay) is constantly increasing as APL becomes
larger.

Figure 6 presents ratio reduction in hops of LCN as com-
pared to BTC(a) in Table 1. It can be seen from Fig. 6 that in
LCN, the number of transaction transmission hops Tp increases
as compared to BTC(a), but the number of verification hops Tv
decreases. Since Tv � Tp, the transaction propagation effi-
ciency of LCN is still better than that of BTC(a). Meanwhile, Tv
and Tp first increase and then decrease, achieving the optimal
value when c = k

2 , i.e. c = 9, as shown in Table 1 and Fig. 6.
Therefore, we conclude that the optimal propagation efficiency
of LCN is c = k

2 .
Next, we compare the transaction propagation time of

BTC(a) and LCN under different k, for which c = 0 and c = k
2 ,

respectively. From Table 2 we can see that the CC of LCN is
much larger than that of BTC(a), and the MPR of LCN is much
lower than that of BTC(a). Furthermore, as k increases, the
MPR gap between LCN and BTC(a) becomes even larger. For
example, when k = 12, MPR of LCN decreases by 37.51%
compared to MPR of BTC(a), whereas when k = 30, MPR of
LCN shrinks by 44.05%.

FIGURE 6. Assume k is fixed to 18. When a transaction propagates
to the whole network, the average number of hops in LCN decreases
as compared to BTC. In LCN, the transaction transmission hops Tp

increase, but there is a significant decrease in transaction verification
hops Tv.

We use �Tp to represent the difference between Tp of
BTC(a) and LCN, i.e. �Tp = BTC(a).Tp −LCN.Tp. Similarly,
we use �Tv to denote the difference between Tv of BTC(a) and
LCN, i.e. �Tv = BTC(a).Tv −LCN.Tv. It is clear that �Tp and
�Tv reflect the reduction in the number of propagation hops
of LCN as compared to BTC(a). When k is small, performance
gain of LCN over BTC(a) is also small. For example, when
k = 12, we have �Tp = −0.9235 and �Tv = 1.0920,
i.e. as compared to BTC(a), LCN.Tp increases by 0.9235,
whereas LCN.Tv only decreases by 1.0920. However, when
k = 24, we can see �Tp = −0.4938 and �Tv = 1.0701,
meaning performance improvement of LCN is significant.
Figure 7 presents ratio reduction in hops of LCN as compared
to BTC(a) in Table 2.
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TABLE 2. Transaction propagation efficiency versus average node degree k.

k 12 14 16 18 20 22 24 26 28 30

c = 0 APL 3.9659 3.7681 3.6326 3.5158 3.4024 3.2940 3.1954 3.1104 3.0405 2.9853
CC 0.0012 0.0014 0.0016 0.0018 0.0020 0.0022 0.0024 0.0026 0.0028 0.0030
MPR 6 7 8 9 10 11 12 13 14 15
Tp, Tv 3.9566 3.7758 3.6380 3.5074 3.4034 3.2912 3.1869 3.1084 3.0420 2.9883

c = k
2 APL 4.2318 3.9786 3.7966 3.6693 3.5645 3.4658 3.3692 3.2774 3.1930 3.1191

CC 0.2509 0.2507 0.2507 0.2512 0.2509 0.2511 0.2512 0.2516 0.2514 0.2520
MPR 3.7494 4.2860 4.8133 5.3316 5.8506 6.3638 6.8737 7.3815 7.8921 8.3921
�Tp −0.9235 −0.7426 −0.6383 −0.5711 −0.5083 −0.4973 −0.4938 −0.4837 −0.4732 −0.4582
�Tv 1.0919 1.0506 1.0434 1.0569 1.0695 1.0747 1.0701 1.0602 1.0326 0.9974

FIGURE 7. The number of hops reduced with respect to average node
degree k (the higher the value, the better). The average clique size c
is k

2 in LCN. Compared to BTC with the same average node degree,
transaction verification hops Tv in LCN, and the transmission hops Tp

also decrease with increasing average node degree.

In Fig. 7, we can see that that hop decreases as the aver-
age degree increases. However, it is interesting that when k
becomes larger, say k = 28, there is a slight increase in
performance gain of LCN. The reason is that when k = 28
(Note that this number of average node degree is large enough
for a network of 10 000 nodes), LCN has already achieved fast
transaction propagation speed by using propagation strategy
(a), hence the performance gain by simultaneously employing
propagation strategy (b) is not that significant.

We present comparison results of experimentally calculated
MPR with the theoretical MPR in Eq.(7) in Fig. 8. As shown
in Fig. 8a, when c is small, the theoretical MPR in Eq.(7) is
significantly larger than the experimentally calculated MPR.
However, when c becomes large, the theoretical MPR and the
calculated MPR are close. This is because when c is small, the
clique size of the network does not completely follow a normal
distribution. In addition, as k increases in Fig. 8b, the theoretical
MPR and the calculated MPR remain consistent.

In general, the larger the average node degree k, the better
the performance for both LCN and BTC networks. However,
a more significant k means that nodes need to process more
messages, which may cause congestion in message processing.
In the experiment, we can see that LCN has a lower MPR than
BTC when the average node degree is the same, and transaction
propagation speed in LCN is faster, which can significantly
alleviate the congestion problem during message processing.

5.3. Transaction propagation efficiency under real
settings

This section uses the collected real transaction data in the
Bitcoin network to simulate transaction propagation in three
networks, i.e. BTC, BTC(a) and LCN. We randomly assign the
collected Tp and Tv to each node in the networks. Specifically,
when a node receives a message, it uses its own Tp and Tv to
calculate the time delay. In this way, our experiment in this sec-
tion can approximate the transaction propagation process in the
real Bitcoin network. Note that we define the propagation time
delay as the difference between the time when a node finished
transaction verification and the time when the transaction was
generated.

Table 3 depicts the comparison results between BTC,
BTC(a) and LCN in terms of average propagation time
delay (TD) and MPR. As shown in Table 3 and Fig. 9, the
propagation time delay of BTC(a) is much lower than that
of BTC, which means that propagation strategy (a) incurs a
remarkable improvement in transaction propagation speed.
When k = 36, the transaction propagation time delays of
BTC(a) and LCN are smaller than that of BTC, i.e. decreases
by 5.90% and 8.28%, respectively. When k = 10, propagation
time delays of BTC(a) and LCN are the smallest as compared
to BTC, i.e. decreased by 14.93% and 13.58%, respectively.
Meanwhile, from Fig. 9 we can see that although when k < 16
the propagation delay of BTC(a) is close to LCN, the latter
outperforms the former consistently when k ≥ 16.

Figure 10 shows the transaction propagation time delay
of nodes in BTC and LCN when k = 28, in which the majority
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FIGURE 8. Experimentally calculated MPRLCN versus theoretical MPR computed by Eq.(7).

TABLE 3. Transaction Propagation Time Delay (TD) and MPR Versus k.

Networkk 10 12 14 16 18 20 22 24 26 28 30 32 34 36

TD BTC 2.91 2.68 2.51 2.35 2.25 2.16 2.09 2.02 1.97 1.91 1.87 1.83 1.81 1.76
BTC(a) 2.48 2.31 2.17 2.07 1.99 1.92 1.88 1.83 1.80 1.76 1.73 1.70 1.68 1.66
LCN 2.52 2.32 2.19 2.05 1.96 1.89 1.84 1.79 1.76 1.71 1.68 1.67 1.64 1.61

MPR BTC,BTC(a) 5 6 7 8 9 10 11 12 13 14 15 16 17 18
LCN 3.21 3.75 4.28 4.81 5.33 5.85 6.36 6.88 7.39 7.89 8.40 8.91 9.41 9.91

FIGURE 9. Average transaction propagation time delay of BTC,
BTC(a) and LCN versus average node degree.

of the time delay of LCN lies to the left of BTC. This means
that the transaction propagation delay of the majority nodes in
LCN is lower than those in BTC.

Since BTC(a) has the same network structure as BTC, the
only difference is that BTC(a) uses the propagation strategy (a).
Hence, the MPR of BTC and BTC(a) are the same. Figure 11
presents the MPR of inv in BTC and BTC(a) with LCN, from

FIGURE 10. Distribution of transaction propagation time delay (N =
10 000, k = 28).

which we can see that MPR increases with k. However, the
growth rate of the MPR in the LCN is much slower than those in
BTC and BTC(a). Specifically, when k = 10, MPR in LCN is
64.09% of the MPR in BTC, whereas when k = 36 the number
decreases to 44.95%.

Next, we investigate the average number of times a node
receives an inv and present the results in Fig. 12, where
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FIGURE 11. The average number of inv received by nodes in Bitcoin
network (BTC) and in LCN.

FIGURE 12. Distribution of the average number of inv received by
nodes in BTC and in LCN, respectively (N = 10 000, k = 28).

N = 10 000 and k = 28. In LCN, 90.26% of its nodes receive
the same message no more than 14 times, whereas in BTC this
number is 54.09%. At the same time, 99.36% of the nodes in
LCN receive messages no more than 20 times, as compared
to 75.76% of the nodes in BTC. We found that the median
number of the inv received times is 7 for LCN and 13 for
BTC. Therefore, MPR in LCN is much smaller than that in the
random network.

From the above experiment results we can see that both
random network and LCN benefit from a higher average node
degree. However, LCN performs better than random network,
in terms of transaction propagation time delay and MPR.

5.4. Robustness of LCN

In this section, we investigate the robustness of LCN in case
of node failure (or node exiting the network) and edge failure.

An edge failure between any two nodes results in unsuccessful
transaction propagation between them. Note that if a node finds
that any block does not include its transaction, then the node
will resend the transaction. We do not consider this case in our
experiment.

We present the experiment results of the robustness of BTC,
BTC(a), LCN versus node failure rate and the average node
degree, respectively, in Fig. 13. As the node failure rate grows,
the transaction time delay of the three networks also increases.
Meanwhile, edge failure imposes a greater impact on propaga-
tion efficiency in networks than node failure does. For example,
when k = 28 and failure rate is 20%, node failure causes time
delay of 2.0198, 1.8299 and 1.8044s for the three networks,
respectively. In contrast, edge failure gives raise to the time
delay of 2.0718, 1.8613 and 1.8366s for BTC, BTC(a), and
LCN, respectively. In other words, transaction propagation time
delay becomes higher when there are edge failures rather than
node failures.

The two network structures, i.e. random network (including
BTC and BTC(a)) and LCN, both exhibit good robustness. For
example, when k = 10, i.e. k = 	ln(10 000)
 = 	9.21
,
even with 20% edge failure rate, propagation time delays only
increase by 9.00%, 6.45% and 12.14% for BTC, BTC(a) and
LCN, respectively. In the case of low failure rates, say 5%
or 10%, the impact of the node or edge failure on the entire
network is relatively small.

To accurately evaluate the impact of different failure rates
on transaction propagation time delay, we introduce time delay
rate (TDR), TDR = TD1−TD0

TD0
, where TD1 is the average

time delay of a network with node/edge failure and TD0 the
average time delay of a network without any node/edge failure.
Figure 14 depicts TDR of BTC, BTC(a) and LCN with respect
to different failure rates and average node degree k.

As can be seen in Fig. 14, BTC(a) yields the lowest TDR,
which means that node or edge failure imposes the least impact
on BTC(a). Although the network structures of BTC(a) and
BTC are the same, messages in BTC(a) propagate faster. With
small k, e.g. k = 10, TDR of LCN is higher than that of BTC
and BTC(a) when there is either a node or an edge failure. As
k increases, however, TDR of LCN gradually decreases and
outperforms BTC.

The average node degree k has a significant impact on the
robustness of LCN too. When k becomes large, robustness of
LCN improves and approaches to that of BTC(a). For example,
when k = 36 and the edge failure rate is set to 10%, TDR
of BTC, BTC(a) and LCN are 3.69%, 2.46% and 2.67%,
respectively. Nevertheless, the transaction propagation speed
in LCN is the fastest, e.g. propagation time delays of BTC,
BTC(a) and LCN are 1.8247, 1.6967 and 1.6571 s, respectively.

The above experiment results show that both random
networks and LCN exhibit excellent robustness in case of
node/edge failure. When the average node degree is very
small, LCN is slightly less robust than BTC. However, when
the average node degree becomes large (Note that this is a
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FIGURE 13. The average time delay of a transaction propagating to the whole network versus node/edge failure rate.

FIGURE 14. TDR versus failure rate and average node degree.

characteristic of existing Bitcoin network), LCN is more robust
than BTC.

6. CONCLUSION

In this paper, we focus on the problem of improving transaction
propagation efficiency in the Bitcoin network. We conduct an
empirical study on real Bitcoin transaction data and find that
transaction verification and network delay affect transaction

propagation efficiency. We propose a novel P2P network struc-
ture called LCN, and introduce two efficient transaction prop-
agation strategies. Experiment results show that our propaga-
tion strategies can significantly reduce transaction propagation
delay, and LCN exhibits favorable robustness even with a high
node/edge failure rate.

Except for the Bitcoin network, LCN is also suitable for
other P2P networks that use the Gossip protocol, as long as
the network has characteristics of fast message transmission
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speed and long single-node verification time. Overall, LCN
achieves faster message propagation efficiency and lower mes-
sage redundancy than random networks. In our future work,
we will consider the problem of how to choose the best clique
for new nodes to join, so as to further improve transaction
propagation efficiency in LCN.
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